If it's not what You are looking for type in the equation solver your own equation and let us solve it.
52x^2+87x=0
a = 52; b = 87; c = 0;
Δ = b2-4ac
Δ = 872-4·52·0
Δ = 7569
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{7569}=87$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(87)-87}{2*52}=\frac{-174}{104} =-1+35/52 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(87)+87}{2*52}=\frac{0}{104} =0 $
| 11y−7y−5=63.04 | | 11y−7y−5=63.04. | | 9x-17=x-1 | | 3(3x-4)=2(4x+2) | | 2+7m=9m+10 | | 3+4n=93 | | 3x-(5x-10)=2x-22 | | 11x+17=83 | | -1+8g=9+7g | | 4r+10=4r+8 | | 3|x−7|−2=4 | | -140=-2(8r=6) | | -7w=-7w-10 | | 5x-(7x+1)=13 | | 5h-13=1@ | | (x-5)=7(x+3) | | (x+5)^2=144 | | -7x-2=-4x-7 | | 4(3x+7)=-39+43 | | 7x/4=171-3x | | 1/5q=1-2/5q | | r=18=91 | | -10x-4=-7x−14 | | 15m+3=14m | | 9=11-1y | | n−63=1 | | x+(20-x)+(40-x)=180 | | -8n+16=-2n-6(n-2) | | 12a-9=11a | | 38-k=22 | | -7/4x+3/2x=-5/14 | | -10+p=15 |